
P1: JQX

International Journal of Theoretical Physics [ijtp] pp1183-ijtp-485180 May 19, 2004 21:55 Style file version May 30th, 2002

International Journal of Theoretical Physics, Vol. 43, No. 2, February 2004 (C© 2004)

Synthetic Vector Analysis II

Hirokazu Nishimura 1

Physicists prefer approximate calculations. This is natural, since physics is an empir-
ical science. What is surprising judicious mathematicians is that many physicists use
their favorite approximate reasoning to establish such theorems of pure mathematics
as Gauss’s divergence theorem and Stokes’ theorem. What is more surprising is that
their discussions impressively appeal to our geometric and physical intuitions, so that
the discussions appear cryptically convincing, though mathematicians feel forced to
contend offhand that such discussions are mathematically untenable and flimsy. In our
previous paper (Nishimura, H. (2002).International Journal of Theoretical Physics41,
1165–1190) we have shown that once we realize that their discussions in establishing
Gauss’s divergence theorem and Stokes’ theorem are not approximate (with errors) but
infinitesimal (without errors), the discussions are bona fide authentic. What we should
do is only transfer between the standard universe of sets and mappings whose set of
real numbers contains no infinitesimals but zero and an intuitionistic universe of sets
and mappings whose set of real numbers contains nilpotent infinitesimals in abundance
and in coherence. The principal objective in this paper is to show that the same finesse
can establish the celebrated Gauss–Bonnet theorem relating the topology and the Gaus-
sian curvature of a surface, opening the way to the geometric theory of characteristic
classes.

KEY WORDS: infinitesimal calculation; approximate calculation; nilpotent infinites-
imal; synthetic differential geometry; vector analysis; divergence theorem; Stokes’
theorem; Gauss–Bonnet theorem; Gaussian curvature.

1. INTRODUCTION

Physicists prefer approximate discussions. They are apt to identify a smooth
function with its Taylor expansion up to a certain finite-order on the pretext that
the quantities at issue are very small. Generally speaking, approximate discus-
sions (with errors) yield approximate conclusions (with errors). Therefore, it is
astonishing and even astounding fastidious mathematicians that many physicists
are adamant enough to use their favorite approximate discussions so as to get
theorems of pure mathematics such as Gauss’s divergence theorem and Stokes’
theorem. It has long been an enigma why approximate discussions (with errors)
can yield exact conclusions (without errors).
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In our previous paper (Nishimura, 2002), we have succeeded in unveiling
physicists’ sacraments. What has appeared to be approximate calculations is no
other thaninfinitesimalcalculations. While approximate calculations are generally
haunted by errors, infinitesimal calculations are genuinely exact calculations. The
confusion between approximate and infinitesimal calculations has led to a mys-
tery. It is true that the set of real numbers in our standard universeS of sets and
mappings contains no infinitesimals except zero. However, there is an intuitionistic
universeG of sets and mappings in whichnilpotentinfinitesimals are available in
abundance and in coherence so that infinitesimal reasoning is admissible and even
recommendable. This is the world ofsynthetic differential geometry, for which the
reader is referred to Kock (1981), Lavendhomme (1996), and Moerdijk and Reyes
(1991). Furthermore, we can transfer rather freely betweenS andG so that we may
prove a theorem (e.g., Gauss’s divergence theorem) inG to get the corresponding
theorem inS. SinceG enjoys an infinitesimal horizon clearly distinguished from
local and global ones, it is often a good strategy firstly to establish an infinitesimal
version of the desired theorem inG and then to elevate it to a local one inG.
Once a local version of the theorem is established inG, then it is to be transferred
to the corresponding local theorem ofS which is then to be elevated to a global
theorem anyway inS. In our previous paper, we have established Gauss’s diver-
gence theorem and Stokes’ theorem on the infinitesimal horizon and have shown
how to elevate them to local ones inG. The local ones are concerned with squares
(in case of Stokes’ theorem) and cubes (in case of Gauss’s divergence theorem).
Since any smooth manifold is triangulable, and triangles and tetrahedrons are to
be divided into squares and cubes, respectively, our global versions of Gauss’s
divergence theorem and Stokes’ theorem follow readily by division of a given
figure into squares or cubes. In this way, we can retain mathematical rigor while
appealing to physical and geometric intuitions. In particular, we should note that
rot anddiv are so defined that Stokes’ theorem and Gauss’s divergence theorem
hold on the infinitesimal level. We have no other choice in defining operationsrot
anddiv if we want to see these famous theorems obtain on the infinitesimal level.
In other words, these two theorems determinerot anddiv uniquely, so that these
two theorems are tautological on the infinitesimal level.

One of the star attractions of classical differential geometry is undoubtedly
the Gauss–Bonnet theorem relating the topology and the Gaussian curvature of a
surface. The principal objective in this paper is to show that a similar synthetic
argument can establish the theorem. Our infinitesimal formulation of the theo-
rem reveals the geometric meaning of the Gaussian curvature and determines the
Gaussian curvature uniquely, just as Gauss’s divergence theorem and Stokes’ the-
orem on the infinitesimal horizon determinediv androt uniquely. Our local ver-
sion of the theorem is stated for oriented squares. Since any surface, whether it
is orientable or not, can be divided into oriented squares, the global version of
the Gauss–Bonnet theorem can be elicited from our local version. It is to our
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great surprise that Gauss’s divergence theorem and Stokes’ theorem on the one
hand and the Gauss–Bonnet theorem on the other hand should be consanguineous,
which might transcend the most daring physicist’s imagination. This is why the
Gauss–Bonnet theorem is unusually discussed under the rubric of vector analysis.

Moerdijk and Reyes (1991, Chapter 5,§5) have already addressed the Gauss–
Bonnet theorem from a synthetic perch, establishing an infinitesimal version of
the Gauss–Bonnet theorem and then eliciting a local version from it. What they
have called the infinitesimal Gauss–Bonnet theorem is an infinitesimal version
of what is usually called the fundamental theorem of connection and curvature
in orthodox differential geometry. What they have called the local Gauss–Bonnet
theorem appears somewhat deficient to orthodox differential geometers, for they
have not taken leaps of angles into account. This means that their local Gauss–
Bonnet theorem as such does not even imply that the sum of the three interior angles
of a geodesic triangle on a surface isπ plus the integral of the Gaussian curvature
over the triangle (in particular, the sum of the three interior angles of a triangle in
the Euclidean plane isπ ), which would give Gauss’ famous Theorema Egregium
as a direct corollary (cf. Spivak, 1999, II, p. 143). We do not know whether and how
Moerdijk and Reyes (1991) would like to elevate their local Gauss–Bonnet theorem
to the global one, but in an orthodox approach to the Gauss–Bonnet theorem, a
surface whose boundary is of jumps of angles (say, polygons) is approximated
by surfaces with smooth boundaries, for which the reader is referred to Spivak
(1999, III, pp. 266–268). We would like to contend that such an ad hoc argument
is unnecessary. What we should do is only to take jumps of angles into account on
the infinitesimal level from scratch. After fixing our basic framework in Section 2,
we prove the infinitesimal and local Gauss–Bonnet theorems in Section 3 and 4,
respectively. We will work inG throughout Sections 2–4. Concluding remarks
concerning the elementary calculation of the sum of the three interior angles of a
triangle in a Euclidean plane in our Gauss–Bonnet context and a topic of future
study are given in Section 5.

2. THE BASIC FRAMEWORK

We assume that the reader is well familiar with rudiments of synthetic dif-
ferential geometry such as seen in Lavendhomme (1996) up to Chapter 5. Our set
R of real numbers is replete with nilpotent infinitesimals, abiding by the (general)
Kock–Lawvere axiom. There is a relation≤ onR, which is a substitute for the
total order of real numbers in orthodox mathematics. Note that≤ is neither total
nor partial. It is only a preorder. We have 0≤ d andd ≤ 0 for anyd ∈ D, where
D is the set of elements ofR whose squares vanish. In our synthetic context the
interval [a, b] = {x ∈ R|a ≤ x ≤ b} does not determine its endpoints uniquely, so
that, formally speaking, we should distinguish strictly between the interval [a, b]
and the marked interval ([a, b], a, b), both of which are loosely denoted by the
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same symbol [a, b] in this paper. We writea < b for a ≤ b anda 6= b. We say that
a is positiveif 0 < a. We denote byS1 the set{(a, b) ∈ R2|a2+ b2 = 1}. The set
S1 can naturally be identified with theSO(2,R) of matrices(

a −b

b 1

)
with a2+ b2 = 1. Since the latter has a natural group structure, the former can
also be regarded as a group. We assume that the groupS1 can be identified with
the groupR/2πZ, whereZ is the set of integers. We writev for the canonical
projectionR→ S1. We requirev(0)= (1, 0) andv(π ) = (−1, 0). We assume that
v′(0)= (0, 1), wherev is regarded as a mappingR→ R2. Microlinear spaces
play the same role in synthetic differential geometry as smooth manifolds have
played in orthodox differential geometry. They are characterized as spaces which
enjoy a certain transfer principle fromR on the infinitesimal level, just as smooth
manifolds are characterized by means of local charts on the local level in orthodox
differential geometry. An arbitrarily chosen microlinear spaceM shall be fixed
throughout the paper. Givenx ∈ M , we denote byTx(M) the totality of tangent
vectors toM atx, while we denote byT(M) the totality of tangent vectors toM , and
the canonical mappingT(M)→ M assigningt(0) to eacht : D→ M is denoted
by τM . Two nonzero tangent vectorst1, t2 to M at the same point are considered to
beequivalentif there exists a positive elementa of R with t1 = at2. The resulting
equivalence classes are called rays, and their totality is denoted by Rays(M). The
ray determined by a nonzero tangent vectort to M is denoted bỹt . By assigningt(0)
to the raỹt represented by a nonzero tangent vectort to M , we have the canonical
mappingtM : Rays(M)→ M . For eachx ∈ M we write Raysx(M) for the totality
of rays toM that are mapped bytM to x. It is assumed that Raysx(M) is nonempty
for eachx ∈ M . We assume thatS1 acts freely and transitively on Raysx(M) to
the right for eachx ∈ M , so that the canonical mappingtM : Rays(M)→ M is an
S1-bundle. We require that̃t(−1, 0)= (−t̃) for any nonzero tangent vectort to M .

Given two nonzero tangent vectorst1, t2 to M at the same point, an element
a ∈ R with t̃1v(a) = t̃2 is called theanglefrom t1 to t2 and is denoted by](t1, t2)
or by](t̃1, t̃2). Note that the angle](t1, t2) is determined up to mod 2π . We will
make it a rule to choose the angle](t1, t2) with−π < ](t1, t2) < π , as far as it is
possible.

Lemma. 2.1. Let t1, t2, t3 be nonzero tangent vectors to M at the same point.
Then we have

](t1, t2)+ ](t2, t3) = ](t1, t3) (mod 2π ) (2.1)

](t1, t2) = −](t2, t1) (mod 2π ) (2.2)

](−t1, t2) = π − ](t2, t1) (mod 2π ) (2.3)
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](t1,−t2) = π − ](t2, t1) (mod 2π ) (2.4)

](−t1,−t2) = ](t1, t2) (mod 2π ) (2.5)

Proof: (2.1) and (2.2) should be obvious. Since](−t1, t2)+ ](t2, t1) = ](−t1,
t1) = π (mod 2π ) by (2.1), (2.3) follows. (2.4) can be established similarly. For
(2.5) we note that

](−t1,−t2)

= π − ](−t2, t1) [by (2.3)]

= π − {π − ](t1, t2)} [by (2.4)]

= ](t1, t2) (mod 2π ) (2.6)

¤
We should say that, as far as the rest of the paper is concerned, we are fortunate

to see the above equalities hold absolutely (i.e., without respect to mod 2π ). By
way of example, if−π < ](t1, t2) < π and](t2, t3) ∈ D in (1.1), then we can and
should choose](t1, t3) with−π < ](t1, t3) < π , and (1.1) holds absolutely. Such
easy comments will be omitted, and we will bluntly write the equalities absolutely
throughout the rest of the paper.

A microsquareγ : D2→ M is said to bepositively orientedif 0 < ](s0,0,
t0,0) < π with s0,e = γ (., e) andte,0 = γ (e, .) being nonzero tangent vectors toM
for anye∈ D. A mappingγ : [0, 1]× D→ M is said to bepositively oriented
if the microsquare (d1, d2) ∈ D2 7→ γ (a+ d1, d2) is positively oriented for any
a ∈ [0, 1]. A mappingγ : [0, 1]× [0, 1]→ M is said to bepositively orientedif
the microsquare (d1, d2) ∈ D2 7→ γ (a+ d1, b+ d2) is positively oriented for any
a, b ∈ [0, 1].

An S1-connectionon M is a mapping∇ from Rays(M)×M T(M) = {(t, t) ∈
Rays(M)× T(M)|tM (t) = τM (t)} to Rays(M)D abiding by the following
conditions:

l M◦∇(t, t) = t (2.7)

∇(t, t)(0)= t (2.8)

∇(t, at)(d) = ∇(t, t)(ad) for anya ∈ R and anyd ∈ D. (2.9)

∇(tξ, t)(d) = ∇(t, t)(d)ξ for anyξ ∈ S1 and anyd ∈ D. (2.10)

The mapping∇(., t)(d) : Rayst(0)(M)

→ Rayst(d)(M) is bijective for anyd ∈ D. (2.11)

The mapping in (2.11) is denoted byp(t,d), called theparallel transport
along t from t(0) to t(d), while its inverse is denoted byq(t,d), called thepar-
allel transport along t from t(d) to t(0). In the rest of the paper, giveñt ′ ∈
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Rayst(0)(M) andt̃ ′′ ∈ Rayst(d)(M), we will loosely denote byp(t,d)(t ′) andq(t,d)(t ′′)
nonzero tangent vectors toM representingp(t,d)(t̃ ′) and q(t,d)(t̃ ′′), respectively.
An arbitrarily chosenS1-connection∇ on M shall be fixed for the rest of the
paper.

The following easy lemma is implicit in the succeeding two sections.

Lemma. 2.2. For any positively oriented microsquareγ on M and any d, e∈ D,
we have

0 < ]
(
p(s0,d,e)(s0,d), p(te,0,d)(te,0)

)
< π (2.12)

For anyt ∈ Rays(M)D there exists a uniqueb ∈ R such that

]
(
p(tM◦ t,d)(t(0)), t(d)

) = bd (2.13)

for anyd ∈ D. We have

Proposition 2.3. By assigning the above b to t∈ Rays(M)D, we have a (singular)
differential 1-form onRays(M), which is denoted byω and is called the connection
form. h

The following theorem is an infinitesimal version of what is usually called
the fundamental theorem of connection and curvature in orthodox differential
geometry. Its proof is based on the infinitesimal version of Stokes’
theorem.

Theorem 2.4. For anyγ ∈ Rays(M)D2
and any e1, e2 ∈ D, we have

dω(γ )e1e2 = ]
(
q(t0,0,e2)

◦q(s0,e2 ,e1)
◦p(ts1,0,e2)

◦p(s0,0,e1)(γ (0, 0)),γ (0, 0)
)
, (2.14)

wheredω is the exterior differential ofω, s0,0= γ (., 0); s0,e2 = γ (., e2); t0,0=
γ (0, .); andte1,0 = γ (e1, .).

Proof: We have

dω(γ )e1e2 = ω(s0,0)e1+ ω
(
te1,0

)
e2− ω

(
s0,e2

)
e1− ω(t0,0)e2

= ](p(s0,0,e1)(γ (0, 0)),γ (e1, 0)
)+ ](p(te1,0,e2)(γ (e1, 0)),γ (e1, e2)

)
−](p(s0e2

,e1)(γ (0, e2)), γ (e1, e2)
)− ](p(t0,0,e2)(γ (0, 0)),γ (0, e2)

)
= ](p(te10,e2) ◦ p(s0,0,e1)(γ (0, 0)), p(te1,0,e2)(γ (e1, 0))

)
+](p(te1,0,e2)(γ (e1, 0)),γ (e1, e2)

)+ ](γ (e1, e2), p(s0,e2 ,e1)(γ (0, e2))
)

+](p(s0,e2 ,e1)
(
γ (0, e2), p(s0,e2 ,e1) ◦p(t0,0e2)(γ (0, 0)

))
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= ](p(teq ,0,e2) ◦ p(s0,0,e1)(γ (0, 0)), p(s0,e2
,e1) ◦ p(t0,0,e2)(γ (0, 0))

)
= ](q(t0,0,e2)◦q(s0,e2 ,e1) ◦p(te1,0,e2) ◦p(s0,0,e1)(γ (0, 0)),γ (0, 0)

)
(2.15)

¤

Proposition 2.5. There exists a (singular) differential 2-formÄ on M such that

dω(γ ) = Ä(tM ◦ γ ) (2.16)

for anyγ ∈ Rays(M)D2
.

Proof: For any γ ∈ M D2
and any t ∈ Raysγ (0,0)(M), we defineϕ(γ , t) ∈

Rays(M)D2
to be

ϕ(γ , t)(e1, e2) = p(γ (e1,.),e2) ◦ p(γ (.,0),e1)(t) (2.17)

for anye1, e2 ∈ D. It is easy to see that

ϕ(a·i γ , t) = a·i ϕ(γ , t) (2.18)

for anya ∈ R andi = 1, 2. Sincedω(ϕ(γ , t)) does not depend ont by Theorem
1.4, we can define a (singular) differential 2-formÄ to be

Ä(γ ) = dω(ϕ(γ , t)) (2.19)

for anyt ∈ Raysγ (0,0)(M). It is easy to see that (2.16) holds. ¤

For any function f : [0, 1]→ M with the tangent vectorf (.+ a) being
nonzero for eacha ∈ [0, 1], there exists a uniqueb ∈ R such that (2.20)

]
(
p( f (.+a),d)( f (.+ a)), f (.+ a+ d)

) = bd (2.20)

for anyd ∈ D. Thisb is called thegeodesic curvatureof f ata and is denoted by
κg( f, a).

Proposition 2.6. For any function f : [0, 1]→ M with the tangent vector
f (.+ a) being nonzero for each a∈ [0, 1], we have∫ a+d

a
κg( f, x) dx = ](p( f (.+a),d)( f (.+ a)), f (.+ a+ d)

)
for anyd ∈ D.

Proof: This follows from Proposition 11 of Lavendhomme (1996,§1.3) and
(2.20). ¤
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3. THE INFINITESIMAL GAUSS–BONNET THEOREM

The following theorem is a microsquare version of the well-known classical
theorem that the sum of the three interior angles of a geodesic triangle on a surface
is π plus the integral of the Gaussian curvature over the triangle. We would like
to call it theinfinitesimal Gauss–Bonnet theorem.

Theorem 3.1. Letγ be a positively oriented microsquare on M. Let e1, e2 ∈ D.
Let s0,e = γ (., e) and te,0 = γ (e, .) for any e∈ D. Then we have

2π =
∫

[0,e1]× [0,e2]
Ä+ ](p(s0,0,e1)(s0,0), te1,0

)+ ](p(te1,0,e2)
(
te1,0

)
,

− p(s0,e2 ,e1)
(
s0,e2

))+ ](− s0,e2,−p(t0,0,e2)(t0,0)
)+ ](− t0,0,S0,0

)
(3.1)

Proof: It is easy to see that

]
(
p(s0,0,e1)(S0,0), te1,0

) = ](s0,0, q(s0,0,e1)
(
te1,0

))
(3.2)

]
(
p(te1,0,e2)

(
te1,0

)
,−p(s0,e2,e1)

(
s0,e2

))
(3.3)

= π − ](p(s0,e2,e1)
(
S0,e2

)
, p(te1 ,0,e2)

(
te1,0

))
[by (2.4)]

= π − ](q(t0,0,e2)
(
s0,e2

)
, q(t0,0,e2) ◦ q(s0,e2,e1) ◦ p(te1,0,e2)

(
te1,0

))
]
(− s0,e2,−p(t0,0,e2)(t0,0)

)
(3.4)

= ](s0,e2, p(t0,0,e2)(t0,0)
)

[by (2.5)]

= ](q(t0,0,e2)
(
s0,e2

)
, t0,0

)
](−t0,0, s0,0) (3.5)

= π − ](s0,0, t0,0) [by (2.3)]

Therefore we have

]
(
p(s0,0,e1)(s0,0), te1,0

)+ ](p(te1 ,0,e2)
(
te1,0

)
,−p(s0,e2,e1)

(
s0,e2

))
+](− s0,e2,−p(t0,0,e2)(t0,0)

)+ ](− t0,0, s0,0
)

= 2π + {](s0,0, q(s0,0,e1)
(
te1,0

))− ](s0,0, t0,0
)}+ {](q(t0,0,e2)

(
s0,e2

)
, t0,0

)
−](q(t0,0,e2)

(
s0,e2

)
, q(t0,0,e2) ◦ q(s0,e2,e1) ◦ p(te1 ,0,e2)

(
te10
))}

= 2π + ](t0,0, q(s0,0,e1)
(
te10
))+ ](q(t0,0,e2) ◦ q(s0,e2,e1) ◦ p(te1 ,0,e2)

(
te1,0

)
, t0,0

)
[by (1.1) and (1.2)]

= 2π + ](q(t0,0,e2) ◦ q(s0,e2,e1) ◦ p(te1 ,0,e2)
(
te1,0

)
, q(s0,0,e1)

(
te1,0

))
[by (2.1)]
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= 2π + ](q(t0,0,e2) ◦ q(s0,e2,e1) ◦ p(te1,0,e2) ◦ p(s0,e1,e1)
(
q(s0,e1,e1)

(
te1,0

))
, q(s0,0,e1)

(
te1,0

))
= 2π −Ä(γ )e1e2, (3.6)

which gives (2.1). ¤

4. THE LOCAL GAUSS–BONNET THEOREM

Let us begin with

Lemma 4.1. Let γ : [0, 1]× D→ M be a positively oriented mapping. Let
e∈ D. Let sx,d = γ (.+ x, d) and tx,0 = γ (x, .) for any x∈ [0, 1] and any d∈ D.
Then we have

2π =
∫

[0,1]× [0,e]
Ä+ ](s1,0, t1,0)+ ]

(
p(t1,0,e)(t1,0),−s1,e

)
+](− s0,e,−p(t0,0,e)(t0,0)

)+ ](− t0,0, s0,0
)

+
∫ 0

1
κg(γ (., 0), x) dx−

∫ 1

0
κg(γ (., e), x) dx (4.1)

Proof: Let us define a functionf : [0, 1]→ R as follows: For anyx ∈ [0, 1] we
decree that

f (x) =
∫

[0,x]× [0,e]
Ä+ ](sx,0, tx,0)+ ]

(
p(tx,0,e)(tx,0),−sx,e

)
+](− s0,e,−p(t0,0,e)

(
t0,0
))+ ](− t0,0, s0,0

)
+
∫ 0

x
κg(γ (., 0), y) dy−

∫ x

0
κg(γ (., e), y) dy (4.2)

For eachd ∈ D we have

f (x + d)− f (x)

=
∫

[x,x+d]× [0,e]
Ä+ ](sx+d,0, tx+d,0)+ ]

(
p(tx+d,0,e)(tx+d,0),−sx+d,e

)
−](sx,0, tx,0

)− ](p(tz,0,e)(tx,0),−sx,e
)+ ∫ x+d

x
κg(λ(., 0), y) dy

−
∫ x+d

x
κg(γ (., g), y) dy

=
∫

[x,x+d]× [0,e]
Ä+ ](sx+d,0, tx+d,0)+ ]

(
p(tx+d,0,e)(tx+d,0),−sx+d,e

)
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−{π − ](−tx,0, sx,0)} −
{
π − ](− sx,0,−p(tx,0,e)(tx,0)

)}
+
∫ x+d

x
κg(γ (., 0), y) dy−

∫ x+d

x
κg(γ (., e), y) dy [by Lemma 2.1]

= −2π +
∫

[x,x+d]× [0,e]
Ä+ ](sx+d,0, tx+d,0)+ ]

(
p(tx+d,0,e)(tx+d,0),

− sx+d,e
)+ ](−tx,0, sx,0)+ ]

(− sx,0,−p(tx ,0,e)(tx,0)
)

+](p(sx,0,d)(sx,0), sx+d,0
)− ](p(sx,e,d)(sx,e), sx+d,e

)
= −2π +

∫
[x,x+d]× [0,e]

Ä+ ](p(sx,0,d)(sx,0), tx+d,0
)+ ](p(tx+d,0,e)

)
(tx+d,0),

− p(sx,e,d)(sx,e))+ ]
(− tx,0, sx,0

)+ ](− sx,0,−p(tx,0,e)(tx,0)
)

= 0 [by Theorem 3.1] (4.3)

This means thatf ′ = 0 on [0, 1], so thatf is constant on [0, 1]. Sincef (0)= 2π
trivially, we have f = 2π on [0,1]. In particular,f (1)= 2π , which is tantamount
to (4.1). ¤

Now we have the full version of the local Gauss–Bonnet theorem.

Theorem 4.2. Letγ : [0, 1]× [0, 1]→ M be a positively oriented mapping. Let
sa,b = γ (.+ a, b) and ta,b = γ (a, .+ b) for any a, b ∈ [0, 1]. Then we have

2π =
∫

[0,1]× [0,1]
Ä+ ](s1,0, t1,0)+ ](t1,1,−s1,1)+ ](−s0,1,−t0,1)

+](−t0,0, s0,0)+
∫ 1

0
κg(γ (., 0), x) dx+

∫ 1

0
κg(γ (1, .), x) dx

−
∫ 1

0
κg(γ (., 1), x) dx−

∫ 1

0
κg(γ (0, .), x) dx (4.4)

Proof: Let us define a functiong : [0, 1]→ R as follows: For anyy ∈ [0, 1] we
decree that

g(y) =
∫

[0,1]× [0,y]
Ä+ ](s1,0, t1,0)+ ](t1,y,−s1,y)+ ](−s0,y,−t0,y)

+](−t0,0, s0,0)+
∫ 1

0
κg(γ (., 0), x) dx+

∫ y

0
κg(γ (1, .), x) dx

−
∫ 1

0
κg(γ (., 1), y) dx−

∫ y

0
κg(γ (0, .), x) dx (4.5)
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For eachd ∈ D we have

g(y+ d)− g(y)

=
∫

[0,1]× [y,y+d]
Ä+ ](t1,y+d,−s1,y+d)+ ](−s0,y+d,−t0,y+d)− ](t1,y,−s1,y)

−](−s0,y,−t0,y)+
∫ 1

0
κg(γ (., y), x) dx+

∫ y+d

y
κg(γ (1, .), x) dx

−
∫ 1

0
κg(γ (., y+ d), x) dx−

∫ y+d

y
κg(γ (0, .), x) dx

=
∫

[0,1]× [y,y+d]
Ä+ ](t1,y+d,−s1,y+d)+ ](−s0,y+d,−t0,y+d)

−{π − ](s1,y, t1,y)} − {π − ](−t0,y, s0,y)} +
∫ 1

0
κg(γ (., y), x) dx

+
∫ y+d

y
κg(γ (1, .), x) dx−

∫ 1

0
κg(γ (., y+ d), x) dx

−
∫ y+d

y
κg((0, .) [by Lemma 3.1]

= −2π +
∫

[0,1]× [y,y+d]
Ä+ ](t1,y+d,−s1,y+d)+ ](−s0,y+d,−t0,y+d)

+](s1,y, t1,y)+ ](−t0,y, s0,y)+
∫ 1

0
κg(γ (., y), x) dx+ ](p(t1,y,d)(t1,y), t1,y+d

)
−
∫ 1

0
κg(γ (., y+ d), x) dx− ](p(t0,y,d)(t0,y), s0,y+d

)
= −2π +

∫
[0,1]× [y,y+d]

Ä+ ](p(t1,y,d)(t1,y),−s1,y+d
)

+](− s0,y+d,−p(t0,y,d)(t0,y)
)+ ](s1,y, t1,y)+ ](−t0,y, s0,y)

+
∫ 1

0
κg(γ (., y), x) dx−

∫ 1

0
κg(γ (., y+ d), x) dx [by Lemma 2.1]

= 0 [by Lemma 4.1] (4.6)

This means thatg′ = 0 on [0, 1], so thatg is constant on [0, 1]. Sinceg(0)= 2π
trivially, we haveg = 2π on [0, 1]. In particular,g(1)= 2π , which is tantamount
to (4.4). ¤
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5. CONCLUDING REMARKS

Once we establish the local version of the Gauss–Bonnet theorem concerning
oriented squares, we transfer it fromG toS. Let us consider a triangle ABC in the
Euclidean plane inS. Let M be an interior point of the triangle, say, its mass center.
Let A′, B′, andC′ be the middle points of the edges BC, AC, and AB respectively.

By our local Gauss–Bonnet theorem applied to squares AC′ MB′, C′ BA′ M, and
A′ CB′ M expressed in terms of interior angles in preference to exterior ones, we
have

]B′AC′ + ]AC′M + ]C′MB′ + ]MB′A = 2π (5.1)

]C′BA′ + ]BA′M + ]A′MC′ + ]MC′B = 2π (5.2)

]A′CB′ + ]CB′M + ]B′MA ′ + ]MA ′C = 2π (5.3)

By adding the above three equations and noticing that

]AC′M + ]MC′B = π (5.4)

]BA′M + ]MA ′C = π (5.5)

]CB′M + ]MB′A = π (5.6)

]C′MB′ + ]A′MC′ + ]B′MA ′ = 2π, (5.7)

we have

]CAB+ ]ABC+ ]BCA′ = π, (5.8)

since ]CAB = ]B′AC′, ]ABC = ]C′BA′ and ]BCA = ]A′CB′ obviously.
Thus, we have arrived at the familiar fact that the sum of the three interior
angles of a triangle in a Euclidean plane isπ .

Now we turn to an intriguing topic of future study. As is well known, the
Gauss–Bonnet theorem has such higher-order generalizations as the Gauss–
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Bonnet–Chern theorem and such far-reaching extensions as the Atiyah–Singer
index theorem. We would be glad to see whether and how our synthetic approach
to the Gauss–Bonnet theorem can be applied to such higher-dimensional or far-
reaching generalizations.
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